咨询热线
HASHKFK
pg电子游戏,pg电子接口,pg电子官网,pg电子试玩,pg电子app,pg电子介绍,pg电子外挂,pg游戏,pg电子游戏平台,pg游戏官网,PG电子,麻将胡了,PG电子试玩,PG模拟器,PG麻将胡了,pg电子平台,百家乐,龙虎,捕鱼,电子捕鱼,麻将胡了2,电子游戏
ZeroSearch 与真实搜索的奖励趋势相似,随着训练的推进,ZeroSearch 和 Search-R1 的奖励分数都稳步上升。ZeroSearch 的奖励提升更加显著,虽然在训练初期 ZeroSearch 的奖励值低于 Search-R1,但它最终实现了超越,并且波动更小。ZeroSearch 在基础模型和指令微调模型中都展现了良好的泛化能力,在这两类模型下,ZeroSearch 的奖励表现都持续提升。
相对于Base Model,不同类型的 Simulation LLM 均可有效激发策略模型的搜索能力。基于 Prompt 的方法效果较差,主要由于其生成的文档风格与真实搜索引擎差异较大,且质量不稳定,难以支撑稳定训练。经过微调的 Simulation LLM,即便仅有 3B 参数量,也能显著提升策略模型性能;随着模型规模扩大,性能进一步提升:SFT-7B 可达到与 Google 相当的效果,SFT-14B 甚至实现超越 Google 的性能。